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The mutual-radiation resistances resulting from cross-modal coupling have been
mostly excluded from sound power calculations on the belief or premise that either
for some reasons they have an insignificant impact on the power radiation
or consideration of them can be an enormous computational burden. In this paper,
the characteristics of the mutual-radiation resistances are investigated of a simply
supported rectangular plate. It is shown that, once the self-radiation resistances
(or the so-called modal-radiation efficiencies) have been calculated, the mutual-
radiation resistances can be readily obtained at virtually no cost. Of equal import-
ance, because no approximation is made, the present formulation is fully accurate
in the entire frequency range. An asymptotic expression is also derived for large
modal wavenumbers. Numerical results are presented to illustrate the spectral
characteristics of the mutual-radiation resistances and the corresponding impact
on the radiated sound power.

© 2000 Academic Press

1. INTRODUCTION

Acoustic radiation from a rectangular plate is an important subject in acoustics and
has been extensively investigated for years. Many techniques have been utilized to
study the plates of varying complications [1-13]. The radiated sound power is
often determined from the sound pressure in the far field, which typically admits an
analytical or asymptotic solution in a low or high-frequency range [1, 2, 6]. The
sound power can also be obtained from integrating the acoustic intensity over the
surface of a vibrating plate, which, by definition, involves calculating a series of
quadruple integrals. It has been shown that the quadruple integrals can be reduced,
via co-ordinate transformations, to a sum of single integrals, and asymptotic
solutions become available for large or small acoustic wavenumbers [ 10, 11].
Most investigations have been focused on the self-radiation resistances (or
modal-radiation efficiencies) and the resulting sound radiation is simply calculated
from the self-powers that would be “independently” produced by each individual
mode. Such a simplification is widely believed adequate for the cases when the plate
vibrates under a resonant condition. Although the potential problem of only
considering the self-powers generated independently by each mode has long been
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recognized [14], there are few publications in the literature about the
characteristics of the mutual-radiation resistances and their impact to the radiated
sound power. Keltic and Peng [15] investigated the effects of the cross-modal
coupling on acoustic radiation from one-dimensional (1-D) panels by varying force
locations. It was demonstrated that the contributions due to the cross-terms could
be important in a low-frequency range or for a non-resonant response. The main
reason that the mutual-radiation resistances have been commonly ignored in
acoustic power calculations is probably because of the widely held belief that they
may otherwise be a tremendous computational burden. In reference [16], Snyder
and Tanaka presented a set of simple formulaec for determining the
mutual-radiation resistances directly from the self-radiation resistances.
However, their formulation is only good for small wavenumbers because of the
assumption that the plate dimensions are both much smaller than the acoustic
wavelength.

The effects of the cross-modal coupling are also of concern in studying acoustic
radiation from plates loaded with features, such as, masses, springs, and/or ribs. Li
and Gibeling studied acoustic radiation from a spring-reinforced plate [17]. It was
shown that, by using the self- and mutual-radiation resistances of the simple (or
unloaded) plate as a set of basis functions, the acoustic characteristics of the loaded
plate could be converted into solving a simple plate problem. Thus, not only can
a class of complicated plates be investigated in a systematic manner, but also the
most time-consuming acoustical calculations need to be carried out only once when
the same plate is subject to different load conditions and/or reinforcing plans.

As a main objective, this study is focused on the determination of the
mutual-radiation resistances of a rectangular plate. It is demonstrated that,
contrary to popular belief, the mutual-radiation resistances can be easily and
accurately calculated in the whole frequency range. An asymptotic calculation of
the self- and mutual-radiation resistances is also discussed for high order modes.
Finally, the characteristics of the mutual-radiation resistances and their
contributions to the sound power are examined through numerical examples.

2. THE MUTUAL RADIATION RESISTANCES OF A RECTANGULAR PLATE

Figure 1 shows a rectangular plate baffled in an infinite plane. The sound
pressure resulting from the vibration of the plate can be determined from the
Rayleigh integral

— lwpo J\b Ja \/\.}(X,, y/)e_ikR dx/dy/ (1)

where w is the velocity of the vibrating plate, k is the acoustic wavenumber, p, is the
density of air, w is angular frequency, and

R:|r—r’|=\/(x—x’)2+(y—y/)2+zz.
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Figure 1. A rectangular plate in an infinite baffle.

The radiated sound power can be obtained by integrating the acoustic intensity
over the surface of the plate

W= | 3RO wpwl-o]dxar @)

where R and * denote the real part and the complex conjugate of a complex
number, respectively.
The plate vibration is often sought as a linear combination of the flexural modes

o0 a0

w = Z Z A Yinn (X, Y)s 3)

m=1n=1
or, in a matrix form,
w= YTA, 4)

where A4,,, is the expansion coefficient and, for a simply supported rectangular
plate,

sin o, x sin f3,,y, (%)

2
l/jmn(xa _V) - ﬁ

where o,, = mn/a and 5, = nn/b.
Substituting equations (1) and (3) into equation (2) results in

W =1 pocor’ AMR[Z] A. (6)
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where c is the speed of sound, the superscript H denotes the Hermitian of a matrix,
and Zmn,n’m' (: Cmn,n’m’ + ian,n’m’) is defined as

k(P (e , ~SInkR |
Cona =35 | |, [ [ [ ) S = iy ey

0J0J0JO R

and

k(" coskR
oot =35 | [ [ || s 3 SR vy axdy. )
T R

0J0JOJO

The quantity Z,,, .. is often referred as the specific radiation impedance (ratio). It
is clear from equation (6) that only the real part of the radiation impedance, the
radiation resistance (or more specifically, the self-radiation resistance for m’ = m
and n' = n, and the mutual-radiation resistance otherwise), has a contribution to
the radiated acoustic power. The self-radiation resistance measures the effectiveness
of an individual mode in generating sound and the mutual-radiation resistance
determines how the sound pressure generated by one mode can affect or excite the
vibration of another one.

Generally, the quadruple integrals given in equation (7) need to be calculated
numerically, which is obviously a computing-intensive task. In order to alleviate
this problem, a co-ordinate transformation technique can be used to recast the
quadruple integrals into several double integrals. As detailed in Appendix A, the
results can be generally expressed as

2ke(m — - b ra in k. /12 2
Commrn = el —m)e(’ — 1) f J (c1dy + ¢y + c3l3 + 0414)wdx dr,
nab 0Jo JKE*+ 12
9

where k(= x — x) and 7(= y — )') are two new integration variables, I; is simply
a product of the sine/cosine function of x times the sine/cosine function of 1, ¢; is at
most a bilinear function of xk and t, and

1 for m" =m,
em —m)=(0 form"—m= +1, £3, £5,..., (10)
2 form—m= 42 4+4, +6,....

Obviously, the matrix R[Z] is symmetric, which is readily seen from equation (7).
Further, equation (10) indicates that it is sparse: only about a quarter of its
off-diagonal elements is not identically zero. In spite of these favorable properties,
one may still find it overwhelming to try to calculate the off-diagonal elements
directly from equation (9) when a large number of modes has to be included. To avoid
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this difficulty, the contributions of the mutual-radiation resistances are often
neglected in sound power calculations.

In order to find an effective way of determining the mutual-radiation resistances,
the self-terms are alternatively written as

2k 1 1 1
—_ Jmn Jmn _ Jmn _ Jmn 11
Cmn,mn nab {amﬂn 1 + 2 + %, 3 + ﬁn 4 }7 ( )
where
Jr 1 sin o,k sin f3,©
J bral(a— k)b — COS 0,k COS 3,7 | sink
2 :jj ( )(b—1) ! Bt | sink/k? + 12 dede. (12)
J3" 0Jo (b—1) sin o,k cos fB,T K2+ 12
Ji (@ —x) COS 0,k Sin f3,T

In light of equation (12), the mutual-radiation resistances can be expressed as:
for m #m’ and n # n/,

¢ 2k e(m —m)e(n’ —n)
" b (o, — o) (57— BR)

{ mﬁ J _Ocmﬂn"]iln’n_am'ﬂnj’lm‘l+O(m’ﬁn"]inn};

(13)
form#m and n=n',
B 2k e(m’ — m) ' -
Cmn,m’n - nab ((xi - OCy2,1’) {am‘lli am’J + ﬁnJ ﬁn J } (14)

and for m =m’ and n # v/,

2k e(n’ —n) ot Bu -
gmn,mn’_ ab(ﬂ2 ﬁz) {ﬁn‘]4 ﬁn + mJ OCmJl } (15)

Because m and m’ (also n and n’) will each take the numbers only from the same
collection (of integers) in numerical calculations, one shall realize that all of the
integrals in equations (13-15) must have already appeared in the expressions for the
self-radiation resistances. In other words, after the self-radiation resistances are
determined, the mutual-radiation resistances will become readily available from
equations (13-15), no additional integrals need to be calculated. It should also be
noted that, since no assumption or approximation has been involved, equations
(13-15) are completely accurate regardless of frequency or wavelength.
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The double integrals in equation (12) can be further simplified by introducing a set
of polar co-ordinates (p, $), satisfying [10, 11]:

9
el

Accordingly, for example, the first integral in equation (12) can be rewritten as

b ra : 2 2
. . sink/x*+1 -
Jmm — sin o,k sin f,1 —~e——=—dicdt = 3" (otys, B> @, b) + IP (0> B> G, b),
0Jo K2+ 12

17)

tan~ !(u) secd
I (0t By a,b) = J dSJ sin (ao,, p cos ) sin (af, p sin 3) sin (kap)adp (18)

0 0

and

/2 ucsc9
I3ty P, a,b) = J dSJ sin (ao,, p cos 9)sin (af, p sin $)sin (kap)adp (19)

tan~(u) 0

with u = b/a.
In equation (18), the integration with respect to p can be carried out analytically,

tan (1)
S(11)(0(m> ﬁna a, b) = % J' {S(O‘ma ﬁn, k, ‘9) + S((xma - ﬁna - ka ‘9)
0
— SOy — Pus ks F) — SOy Py — k, 9)} dI. (20)
where

cos (ao,, cosd + af,sin 3 + ak)p
oy cos 3+ fB,sin 3+ k

S, P, k) =

p=secy

cos (aa,, cosd + af,sin 3 + ak)p

% Cos 3+ B,sin $+ k @D

p=0

Similarly, one obtains

- bra sinky/k* + 2 ~1) ~(2)
Iy = COS o, K €08 f3,T1 —r—=—dr dt = 35" (04, P> @, b) + 35 (ot P, a, b),
0Jo JKr?+ 1

(22)
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b ra .
) sink./x* + 1°
Jyn =j j sin o, k €08 f,t —~—=—dr dr = I s Bus @, b) + IP (% s a, b),

0J0 K2 + 12
(23)
~ b . sink/Kk? + 12 . 0
RS Cos OCmeSlIlﬁn‘L'z—deT =3 )( Oms ﬂna a, b) 3 )( maﬁnaa b)
0Jo K°+71
(24)
with
1 (tan” )
S @B = [ (= St ok 8) 4 S — e~ k9
- S(ama _ﬁna k, '9) + S(fxma ﬁna _ka '9)} dga (25)
1 tan”!(w)
(31)( Ol s ﬁnaa b) J { _R(ama ﬁn: k, ‘9) + R((xma _ﬁna _ka ‘9)
0
- R((xma _ﬂn, k, '9) + R(ama ﬂna _k, '9)} dlga (26)
and
1 tan~!(p)
J}l.l)(ocma ﬁna a, b) = Z JO { - R((xma ﬁna k, ‘9) - R(O(m, - ﬁna - k, 19)
+ R((xma _ﬁn, ka '9) + R(ama ﬂna _k, '9)} dlga (27)

where R(a,,, f,, k, 3) is simply obtained from S(,,, 8,, k, ) by replacing cos(-)p
with sin(-)p in the latter.

The second part of the integrals in equations (17) and (22-24) can be directly
obtained from

32 (Gtms Bus ) = IV (B, oy by @) (i = 1, 2), (28)
3 (cts Bus @ b) = 3 (B,, 0y b, @) (29)

and
3 Gty Bus @, b) = I (B, 0ms b, a). (30)

Examining equations (20) and (25-27), one can find a more effective way of
calculating these integrals.
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Define
1 rtan”'(p)
3¢5 (O Bus a,b) = 3 . {S(0tms — Py —ky ) — SO, —Pur k, H}dI,  (31)
1 rtan”'(w)
31,2 Oty Bu> a,b) = 5 . {S(cts Py ks 3) — S(cty P —k, 3} d G, (32)
1 rtan” 1w
Sg,4(ama ﬁna a, b) = E { - R(ama ﬁn’ k; ‘9) + R(ama ﬂns - ka ‘9)} d‘9> (33)
JO
and
1 (tan”'G
35,4 (0m, Busa,b) = 5 J‘o {R(oty, —Buy —k,3) — R(tts — Pk, )} dY. (34)
It is then clear that
S (0s B @5 b) = 3[31 2 (0tms Pus b)) + 3% 2(0ms B @, b)], (35)
S(21)(Ocm: ﬁna a, b) = % [S?,Z(am, ﬁn, aab) - SSl,Z(ama ﬁna a, b)]7 (36)
35 oty Brs @, b) = 5 [35,4 (s Pus @, D) + I5,4(ctms Pus a,b)], (37)
and
Sg(tl)((xm, ﬁn: a, b) = % [Sg,4(am» ﬁm Cl,b) - S%A(O‘m) ﬁna a:b)]- (38)

To fully take advantage of the above results, the last three integrals in equation
(12) will be expressed in slightly different forms, e.g.,

b ra : k 2 2
Jat = f j (a —x)(b — 7)cosa,, Kk cos f,T udkdr

0Jo JK? T2

b ra : 2 2
sink
= abJ J COS O, K COS f3,T —K—I_Td;cdr

0J0 JK?+ 12

b ra : 2 2
—aaz JJ cosocmzcsinﬁnrsmk—xﬂdxdr

0Jo Jr2+ 12
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a b ra : k 2 2
—b— ff sinamxcosﬁnrudxdr

0%y JoJo JK? + 12

02 bpra ) sink./k* + 12
+ j J sin o,k sin §,1 —————dx dr

8ﬁn aoCm 0J0 N K2 + 'Ez
0 0 02
— b Smn ~mn b 7 exmn Y =mn )
ap S, a aﬁn Ry aam 330+ aﬁn aOCm 31 (39)

Since the integrals given in equations (31-34) are to be calculated numerically, the
differential operations must be completed before the numerical intergrations are
actually carried out. There seemingly exist some singular points in the integration
domain. However, it is easy to verify that they are all removable and do not call for
any special treatment.

3. AN ASYMPTOTIC CALCULATION OF THE RADIATION RESISTANCES
OF HIGH ORDER MODES

It can be seen from equation (21) that the functions, S(a,, f., k,$) and
R(o, B, k, ), will oscillate rapidly for a large k or p,. Therefore, the
aforementioned numerical integrations will accordingly become slow-converged.
Since various approximate or asymptotic calculations have been well developed for
large acoustic wavenumbers, the current attention will be focused on the large
modal wavenumber case, i.e., §,> 1.

Suppose that a function f(x) and its derivative f”(x) are both analytic in [ x,, x;].
If ¢(x) has no stationary point in [xg, X1 |, then [18]

X1 ivf(x)|x,
F(v) = o(x)eM™dx = 7(p(.x)f3
o vf"(x)

1
+0 <v_2> for v + co. (40)

Xo

To improve the convergence, equation (40) is rewritten as

o= L[ 00

d VS ()
f(x) dx

_ p(x)e
()

(eivf(x)) dx

| {ﬁ¢mwmm% (41)

Xo W Jx,

where

d(w@)zwwﬂn—ﬂmwn‘ @)

0=\ 770

Making use of equation (40) in equation (41) leads to

F(v) = L p(x)e"/ M dx = ) 1_v fo/-(-xd;(x)/ IV v

Ty 0(%). 43)
A%

Xo
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A new variable, o(=1 or 0), is introduced in equation (43) so that equation (40) can

be directly included as the special case of ¢ = 0.
Equation (43) can be readily used to calculate the integrals encountered in the

previous section. For example, setting

1
o9 = Oy COS 9 + f,sin 3 + k’

f(Y) =tan 3+ ksec 9/, + o/, v=ap,,
(44-46)

one can obtain
tan” }(u)

N, fn, k) = J {S(ttms Pus ky 9) + iR (s Py k, )} A9

0
{ iei(ka\/uz—ﬂ + bp, + aw,,)
L (kaJu 1+ bR, + aoy) (ke + Bu/u® + 1)

U(ﬁf + kZ + kOCm)Ci(kaJrMm) N iei(kaJraoc,,,)
a’pi (k + o) Bu(ka + ac,)

O_ei(ka. /u* + 1+ bp, + ao,)

(ka/p* + 1 4+ bB, + ao,)* (ku + B/ 1> + 1)°
X [k(atm + 4pBa)/ 12 + 1+ b7k + B7) (20® + 1) + pot B ]

2 |:tanh1ﬁn+(k_am)(\/ H2+1_1)/H

Br + om — k? B2 + o2 — k2
— tanh ! = ﬁ"z k2:|} for af,> 1. (47)
n + O —

In equation (47), use has been made of

tan"'p 1
L am0058+ﬁnsin9+kd9

tan 'u

2 tanh- Bn + (k — o,,) tanh(9/2)

B+ o — kP B2 + o2 — k2

— 2 (tanh_lﬁ” + (k - OCm)(\/ ,“2 + 1— 1)///’“
J Br o — k? B2 + o2 — k2

— tanh ! L) : 48)

JPEA ok —k?

0




MUTUAL RADIATION RESISTANCES 1223

The remaining integrals in equations (31-34) can be directly calculated from
equation (47) by accordingly changing the sign(s) for the variables f, and k.
However, when only one of these two variables is preceded with a negative sign (it is
the case for all the second terms in equations (31-34)), f($) may have stationary
points in the integration domain. This is clear by considering

f'(9) = sec? 3 — k tan (9 sec 9/,
=sec? 9(1 — ksin(9)/B,)
> sec? 9(1 — ksin(tan™ 1(w))/B,). 49)

However, the occurrence of f'(3) = 0 can be avoided by trimming the frequency
range in such a way that

k<%./l+u2, (50)

where ¢ denotes a small number.

Mathematically, equation (50) does not necessarily have to be imposed in using
the principle of stationary phase. However, when a stationary point exists in the
integration domain, an expression in the form of equation (40) will have a reduced
accuracy of the order of 1/v. Because various approximate solutions are already
available for large acoustic wavenumbers, this no-stationary-point provision is
preferably kept here.

Equation (47) with ¢ = 0 should be chosen at very low frequencies. The reason is
that the function

1
_ocmcosS—ﬁnsinSik

»(I9) (51)

tends to be undifferentiable at the point 9 = tan~(«,/B,) as k — 0. Consequently,
equation (47) with ¢ = 1 may actually become less accurate because it was based on
the assumption that the derivative of the function ¢(9) exists in the integration
domain.

4. NUMERICAL RESULTS AND DISCUSSIONS

For comparison purpose, first consider a steel plate of dimensions:
1-8m x 0-88 m x 0-009 m. This plate was previously used by Snyder and Tanaka
[16] to check their approximate formulae for determining the mutual radiation
resistances directly from the self-radiation resistances. The radiation resistance
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matrix, at 50 Hz, for the 10 lowest modes is obtained as:

(10652 0 3265 0 0 0 0 1947 0 3481 ]
0 0599 0 0 029 0 0 0 0 0
3265 0 1007 O 0 0 0 0601 0 1066
0 0 0 0146 0 0 0046 0 0 0
1017x| 0 029 0 0 0141 0 0 0 0 0
0 0 0 0 0 0005 0 0 0002 0
0 0 0 0046 O 0 0015 0 0 0
1947 0 0601 0 0 0 0359 0 0636
0 0 0 0 0 0002 0 0 0001 O
3481 0 1066 0 0 0 0636 0 1138

(52)

The numbers on the main diagonal are the self-radiation resistances for these 10
modes and the remaining non-zero numbers are the mutual radiation resistances
resulting from their cross-couplings. Other than the constant 1-017, this matrix is
the same as the accurate solution that Snyder and Tanaka obtained directly from

04

Cmnm’n’/ Cmnmn

N T I BT,
025 050 075

Ll
1.0
kik

P

T A B AR
1.25 .50 175 20

Figure 2. Normalized mutual-radiation resistances:
(la 1) X (13 7)5 and -- R (17 1) X (1’9)

> (151)X(1a3)> 7 (1,1)X(1,5), TS
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numerical integration. The minor difference is probably due to the fact that their
results are obtained from the farfield sounds at a distance 54 from the plate (4 is the
acoustic wavelength). Equation (52) clearly indicates that the mutual radiation
resistances are not necessarily smaller than the self-terms and may not always be
safely ignored in the sound power calculation.

Now, direct the attention to the spectral characteristics of the mutual radiation
resistances by considering a square steel plate of 0-5m long and 0-002 m thick. In
Figures 2-6, the mutual-radiation resistances are plotted for some possible
cross-couplings of the modes. The mutual-radiation resistance curves in each figure
have all been normalized with the self-radiation resistance of the lowest mode in
that group. Also, the horizontal co-ordinate has been scaled by the structural
wavenumber, k, = (¢ + fr)'/?, of the (m',n") mode. The results clearly show that
the mutual-radiation resistance for a given pair of modes can be of significance in
a quite wide frequency range that may well extend to the coincidence frequency of
the higher mode. After the coincidence frequency, the mutual-radiation resistance
oscillatorily decays with frequency. This explains the well-known fact that the
cross-modal coupling between a pair of modes can be safely ignored when both of
them are acoustically fast.

For a pair of modes that share the same modal index in one direction, a strong
coupling typically occurs in two lobes which are contiguous if the modal indices are
adjacent in the other direction, and are otherwise connected by a wavy line. The
number of variations in the wavy line seems to be correlated with that of (coupled)

TG—Y g—

I R AT AT
0-25 050 075

.
1.0

T T R A
125 1.50 175 20

klk,

/4

Figure 3. Normalized mutual-radiation resistances:
(1,2)x(1,8), and --—, (1,2) x (1, 10).

> (152)X(1a4)> ) (192)X(1a6)a )
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05

04

0-3

]
’

02

01

Cmnm'n’/ Cmnmn

-0-2

025 050 075 1.0 125 150 175 20

ki,

Figure 4. Normalized mutual-radiation resistances: ——, (2,2) x(2,4); --, (2,2)x(2,6); ----,
(2,2)x(2,8), and —-—, (2,2) x (2, 10).

0-125

0-100
0075 |

0050 |

:
NH
:E [
i 0025
0
0025 |
I TN /AR R AR EEVIN R AP
025 050 075 1.0 125 1.50 175 20
kik,
Figure 5. Normalized mutual-radiation resistances: ——, (1,1)x(3,3); --, (1,1)x(5,5); ----,

(1,1)%(7,7), and —-—, (1,1) x (9,9).
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025 |

020 |

015 |

s I
2 .
T ol0f
5\’% -

0.05 |

of

~005 |

PRI SR IR TR NN SN S [T T AU SN ST NN T W S S ST S S SN
025 050 075 1-0 1.25 .50 175 20
klk,
Figure 6. Normalized mutual-radiation resistances: ——, (2,2) x(4,4); —-, (2,2) x(6,6); ----,

(2,2)x(8,8), and —-—, (2,2) x (10, 10).

modes in between. The patterns, however, are noticeably different for modes that
do not have the same index in either direction, as illustrated in Figures 5 and 6. The
degree of the coupling between any two modes appears to decrease with their
distance in the structural wavenumber space.

It should be clear from these curves that, unlike the self-radiation resistances, the
contributions to the radiated sound power of the mutual-radiation resistances are
not necessarily always positive. In other words, the sound power may be over- or
under-estimated if the effects of the cross-modal couplings are not taken into
account. To demonstrate this point, consider a uniform point force applied to the
square plate at two different locations: (0-1a, 0-2a) and (0-25a, 0-354). A constant
modal damping ratio, 0-002, is assumed for the plate and 64 modes (m, n =1,
2, ..., 8) will be used in the calculations. Plotted in Figures 7 and 8 are, respectively,
the radiated sound powers for the first and second load case. It is shown that the
contributions of mutual-radiation resistances may not always be insignificant at
a resonance frequency. The sound power calculated without considering the
cross-modal coupling can be over- or under-estimated, depending upon frequency
and load condition. This is easily understood by examining, say, the peaks at
ka =175 in Figures 7 and 8. While the mutual radiation resistances have
a contribution of about + 3 dB for the first load case, it turns out to be — 2 dB for
the second load case. It is also interesting to point out that the neglecting of the
cross-modal coupling may result in some spurious peaks like the one near ka = 9-5
in Figure 7. As it is well known, the effects of the cross-modal coupling tend to be
more remarkable at a non-resonance frequency.
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100 L I — T T
9 -
[ {
B [
—.2 oL | il
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g 701 ) \ 7 J
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Figure 7. The radiated sound power for the first location (0-1a, 0-2b): ——, with mutual radiation
resistances; - - -, without mutual-radiation resistances.
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Figure 8. The radiated sound power for the second force location (0-25a, 0-35b): ——, with mutual-
radiation resistances; - - -, without mutual-radiation resistances.

One has already noticed that significant errors can occur at some of the
resonance frequencies. However, it seems difficult, if not possible, to tell, a priori,
when the effects of the cross-modal coupling can be safely ignored. For instance,
while the mutual-radiation resistances clearly have a negligible contribution to the
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peak at ka = 3-5 in Figure &, they become quite important at the same point in
Figure 7. Therefore, questions should be raised about the bounds or universal
validity of the so-called resonance condition that has been widely used as the
justification of neglecting the effects of the cross-modal coupling. However, because
the mutual-radiation resistances have now become readily available, the need to
develop such a criterion, if it exists at all, has been greatly diminished.

5. CONCLUSIONS

It has been shown that the mutual-radiation resistances of a simply supported
rectangular plate can be easily and accurately determined in the whole frequency
range. The spectral characteristics of the mutual-radiation resistances are examined
through numerical examples. It is demonstrated that the mutual radiation
resistances may not be meaningless as compared with the self-terms in a quite wide
frequency range. Without considering the effects of the cross-modal coupling, the
radiated sound power can be well over- or under-estimated, even at a resonance
frequency.

Although this study has been focused on a simply supported plate, the current
results and conclusions are readily applicable to other more complicated plates
which may be subjected to a different boundary condition and/or loaded with such
features as masses, springs or ribs. This is because in such a case the plate deflection
can still be conveniently expressed as a Fourier series or a linear combination of the
modes for the simply supported plate [17, 19].
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APPENDIX A: INTEGRATIONS

Determination of the self- or mutual-radiation resistance involves calculating the
integral:

0J0J0JO

2k b ra pb pa
. . . . )
Comarm: = —3 f J J J Sin 0t,, X Sin f,, Sin o,y X’ sin ¥
na

y sink\/(x —X)? +(y—y)?

\/(x T — dx'dy’ dxdy. (A1)
Introducing a new set of co-ordinates:
K=x—Xx, t=y—y, ¢c=x+x, y=y+Y), (A2)
one will have (refer to Figure 9)
rr 81N o, X S1N 0y X sink\/(x — X+ V) dx’ dx
0Jo JE =X+ —y)

_1 a 2a—x+ 0 2a+k Sin g+K Sin c—K Sink K2+,L.2d d
“2\Uo Je P A I\ 7 /i + 12 cdK
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Figure 9. Integration domains: (a) original; (b) after the co-ordinate transformation.
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: 2 2
} sinky/x” + < di (m =m), (A3)

NI

2e(m’ — m) J" sink./x?* + t?

“ 1
(a — K)cos o,k + —sin o,k
0 Olm

3 5 (0L, SIN 0y K — Oy SIN 0Ly, KC) dic (m #m'), (A4)

O — Oy’ 0 \/K2+‘L'2
where
0 form"—m= +1, +£3, +£5,...,

S(m_m)z{z for m —m= +2, +4, +6,... . (A3)

Equation (A3) for the self-radiation resistance was first given in reference [10, 11].
The integration with respect to y and y" are readily available from equations (A3)
and (A4). The final expressions for equation (A1) can be obtained as follows:

form=m andn=n

gmmzfﬁff{l h+m_mw_oh+w_”h+m—@u}
nab JoJo

Lo ﬁn O ﬂn

sink./x? + 12

dr dr, (A6)
JK:+ 12
where
I, =sina,xsinf,t, I, = cosa,kcosf,, (A7, A8)
I; =sina,kcosf,t, I, =cosa,ksinf,T, (A9, A10)

form#m and n # n/,

2k e(m’ —m)e(n’ —n)

b ra
ot = g N ) Loy s~

sink./x? + 12

— O fuls + o Bl dr dr, (A11)
: SRy
where
I, =sina,, ksinf,t, I, =sina, xsinf,7, (A12, A13)

I =sina,xsinfB,t, I, =sino,ksinf,t; (A14, A15)
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and for m #m’ and n =n/,

é/mn,m'n = 2k L_Z/l) J‘ajb {O(m(b — T)Il — OCm'(b — T)Iz

nab o — o2 Jolo

o Oy sink./x* + 1°
4+ 2]y — 2 —~——dtdk, (A16)
ﬁn ’ ﬁn 4} K2 + ‘L'z
where
I, =sina,, kcosf,t, I, =sina,Kkcosf,t, (A17, A18)

I; =sina,, ksinf,r, I, =sino,ksinf,7. (A19, A20)
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